The DFAS Test Professional’s Companion

Introduction

EVERYTHING ABOUT TESTING IS ITERATIVE- This is an underlying testing
principle. Appropriate testing accompanies each step of software and system assembly
and is repeated with each change. Testing begins with the definition of requirements and
continues throughout the life cycle as requirements are defined and refined; code is
written, tested, and modified; components are assembled and tested together; end users
and interfacing systems are added and their integration tested; the system is deployed;
and modifications are proposed, made, and tested. This document is a supplemental
discussion of testing issues, concerns and techniques. It provides lessons learned and
guideposts, but is not a step by step cookbook.

A wealth of information to help with test planning and management is located on the Test
Integrated Data Repository. Access is limited to those who support or review DFAS
programs; if you qualify, you may obtain a user id and password by contacting Brian Hill
at the Joint Interoperability Test Command (JITC), hillb@fhu.disa.mil. The DFAS
standard test methodologies and procedures for developing test plans and necessary test
documentation are available on the Infoweb. Look under
https://infoweb.dfas.mil/technology/pal/ and check the PAL index to find what you need.
Also on the web are the System Development Scenario (SDS) and System Modification
Scenario (SMS) which integrate test activities with other necessary system development
or modification steps. From the DFAS public home page, go to the Reference Library
and look under “Program Manager Tools”, http://www.dfas.mil/library/. Finally, the
web has the DFAS guidance on testing included in the DFAS 8000.1R document. Look
on the Infoweb and navigate to policy and procedures, then to regulations,
https://infoweb.dfas.mil/library/Regulations/.

Please note, the Uniform Resource Locator (URL) addresses used throughout this
document, reflect currently accurate addresses. These addresses may change or be
updated. Also, some restrict access to specific users.

Why We Should Care- There are major benefits to a good testing program. Three
very important ones are the reduced cost of development and implementation, improved
customer satisfaction (public relations), and reduced cost of operation.

Development costs and schedule are often hostage to delays caused by the discovery of
errors or major oversights late in the development cycle. Extra resources and overtime
drive up costs in conjunction with the need to back up to the point of the omission, fix it,
be sure it works, then try to catch up to original projections. A good testing program
provides opportunity to discover and fix these problems when they occur. The program
stays on track and the extra costs of extraordinary effort and schedule slips are avoided.

Often, the acceptance test is the customer’s first opportunity to test-drive the new
product. If careful testing and strict readiness reviews have not been enforced, the
acceptance test will not lead the customer to accept the system. The acceptance test
becomes the forum for discovering data initiation problems, data transfer and interface


mailto:hillb@fhu.disa.mil
http://www.dfas.mil/library/

The DFAS Test Professional’s Companion

problems, mismatches with specifications, computational error, problems in accessing
system information and features, and so on. The experience will lead the customer to
reject the system and make the customer suspicious of the system forevermore.

Perhaps worse is the consequence when insufficient testing leads to deployment of a
flawed system. Common problems are abysmal response times, dysfunctional interfaces,
missing or incorrect initial data values, essential reports that cannot be produced,
essential processes that cannot be executed, and users left clueless by inadequate training
and documentation. These problems lead to costly and time-consuming workarounds
while problems are isolated and fixed, lost productivity, and risk that misstatement of
information in critical, but incorrect, reports may lead to major organizational blunders.
It goes without saying (because the customer is going to say it for us) that this is a most
unpleasant experience for the customer. Good, balanced test discipline and a happy
customer are a much better alternative.

When flaws are not as obvious, customer impact may not be so great. However, any post
implementation flaws will lead to increased production costs. Statistics show it is many,
many times cheaper to find and fix a problem in early testing, than it is to find and fix
that same problem in production. This is one of those statements that makes so much
inherent common sense (less time, fewer people), it is difficult to understand why testing
frequently gets the proverbial “short end of the stick™ in terms of enforced discipline,
resources, and scheduling during the development cycle.

Goal- The primary goal of testing is to find those pesky errors and take the earliest
opportunity to eradicate them. The importance of this cannot be over emphasized. A
good test finds errors. Testers must be attuned to the concept that their job is to break the
software. The conclusion that the software works can be drawn when our best efforts
cannot prove that it doesn’t. Developers and program managers will prefer tests that
prove the software works, with ancillary discovery of errors leading to the unwelcome
conclusion that it doesn’t. This conflict of prime objectives is the reason many guidelines
call for independent testing from the software integration test through operational test and
evaluation. It takes a certain creativity to envision ways in which the software may fail.
This creativity can be stifled in those who prefer to see everything work as planned.

Even tests with the objectives to verify requirements and validate that the
software meets them are designed to find and eliminate flaws. Performance tests (when |
run the software under expected conditions, will performance degrade unacceptably?),
compliance tests (are there deficiencies that will keep the software from obtaining
appropriate certifications?), and acceptance tests (are there customer requirements that
have not been satisfied?) fall into this category.

Principles-How much is enough- Testing sufficient to guarantee that every
possible error has been found and corrected would take infinite time and money. The
software would never be fielded. Insufficient testing leads to enormous expenditures of
time and money. The software may never be fielded. Obviously, somewhere in the
middle is the happy medium—testing that is just right. Helping us to find that happy




The DFAS Test Professional’s Companion

medium is the discipline of risk assessment. We determine which requirements are most
important and determine the impact of potential failures. Knowing this, we figure in how
much risk we are willing to accept. This tells us how much testing is enough.

Principles-Get the tester involved early- The program manager and customer
must ultimately decide the proper priority of requirements and the impact of failures.
They must also agree to what level of risk can be accepted. The tester cannot do it for
them. The tester can help, but only if the tester understands the requirements themselves
and how the associated priorities and risks are represented in the software so that testing
can be appropriately concentrated. For the tester to attain full understanding, and provide
maximum value, he/she must participate in the development from inception:
requirements definition.

Principles-Aqgree on requirements and create a requirements

traceability matrix- Involve testers in requirements definition, interpretation, and
reviews. The test team will make sure requirements are stated in non-ambiguous, testable
terms. These requirements become the core of the requirement traceabiblity matrix
(RTM). The RTM, in turn, is the basis for tracing each requirement to an associated test
and test result, and is thus the basis for demonstrating that requirements were satisfied.
While there is no mandated form or format for the RTM, several DFAS systems have
used them successfully. The program test directors for SABRS, DCAS, DIFMS, and
DJAS can provide good examples of RTM that may be applied to other systems.

Principles-Prioritize requirements- Program managers and customers need to
agree on the priority of requirements. While this requires serious effort, the agreement
will be invaluable during development and testing. Time and dollar constraints may
dictate that some requirements be dropped from the initial release. The priority of
requirements makes such decisions easier. The priority plays an early role in test
planning by providing the basis for the risk analysis that defines the scope of the test.
The priority plays a role again when decisions must be made to curtail testing once it has
begun. Below is a link to one discussion about prioritization techniques and issues.
There are many other discussions on the web. Search and review several in light of the
needs of your project. Just remember to establish a consistent method for your project
and that if everything is “top” priority then nothing has been accomplished. In addition
to a reasonable method of prioritizing the requirements there must be an equitable means
of distributing them across the requirement categories.

http://www.processimpact.com/articles/prioritizing.

Principles-Plan for success- Testing must be defined and planned up front.

Program managers must identify who will provide test support and agree early with
developers, users, and testers on test roles, schedules, and resource requirements. The
Program Test Director is the primary focal point for this early planning and coordination.
Planned test strategies, methodologies, participants, resources, and schedules are the basis



http://www.processimpact.com/articles/prioritizing

The DFAS Test Professional’s Companion

for the Test and Evaluation Master Plan (TEMP) and the more detailed supporting plans
for each test event. The TEMP provides the testing overview for the program and also
serves as a contract among the major test stakeholders. The more detailed supporting
plans lay out tests to be conducted at specified points of the software life cycle and are a
critical component for success. “Seat of the pants” or ad-hoc testing has been proven
over and over to be a poor practice. Software is too complicated and too critical for the
testing process not to be well thought out ahead of time. Proper test plans ensure that
everyone knows what they are trying to accomplish, what must be done to accomplish it,
and how they will know when they have completed the tasks.

And like the test itself, plans are evolutionary and iterative. All test plans are subject to
several updates before test execution. An important entrance criterion for each test is to
be sure that the appropriate plan is in its final form and approved before the test begins.

Principles-Documentation- In addition to the planning documents that must be
prepared, the tests themselves must be documented. Documentation provides essential
test roadmaps and audit trails. Planning documentation describes what must be done and
what results are expected. Test execution documentation provides evidence that the test
was conducted, evidence of what the software did, evidence of the result, evidence of
discrepancies and errors. It provides the basis for analyzing results to determine whether
software performed as expected and whether compliance mandates were met. It provides
the basis for successfully repeating the test once changes have been made so that we will
know: (1) whether the problem was truly fixed or (2) whether a fix or change caused a
problem somewhere else.

Principles-Regression testing- Since our primary premise is that testing is an
iterative process, it follows that we must be able to repeat tests. Tests must be repeatable
because they must be used over and over as software is developed, fixed and modified.
Within each cycle or release, regression testing will ensure that all the software that
previously executed correctly still executes correctly. It is fairly common for changes to
software to have unanticipated effects on seemingly unrelated code. Testing literature
relates numerous accounts linking the omission of regression testing to software disasters
and consequential schedule and cost disruptions. Better we learn from another’s mistakes
than our own and plan for the necessary regression testing. As with initial testing, the
level and completeness of regression testing must be based on a risk assessment. The
complexity of the code, the difficulty of the intended change and the impact of any
problems must be evaluated. Also consider the maturity level and track record of the
development organization in such risk assessments.

Major DOD Test Cateqories- DoD categorizes testing as either developmental or
operational. This handbook is largely limited to a discussion of developmental testing.

In developmental testing, software is tested in the development hardware environment as
it is gradually integrated through the building and testing process until the whole
application/AlS/system is tested as an integrated whole. Developmental testing validates



The DFAS Test Professional’s Companion

the complete system in the development environment, including the use of all expected
external interfaces. Developmental tests should evaluate everything that might impact
successful operation once the software is released, including training, operations
manuals, performance, and restart/recovery. As the software is developed and tested, it
gains more and more of the attributes it will have in its final form. Accordingly, tests are
conducted on platforms and using data that is increasing similar to the anticipated
production environment. How much like the planned production environment the last
phase of developmental testing, the software acceptance test, should be is best determined
through risk assessment. The more complex the system, the greater the risk that an
environment-related problem may go unanticipated; acceptance testing for such systems
should mimic the production environment as closely as possible.

The results of operational test and evaluation (OT&E) provide the basis for the final
deployment decision. ldeally, the software is deployed at a limited number of sites where
the operational test organization can evaluate all aspects of its effectiveness and
suitability to satisfy the originally defined mission need. When it is not practical to
release the system at a prototype site, a parallel production site, or a limited number of
initial sites; the OT&E may be performed using a simulated production environment with
people, training, and interoperability issues mimicking the real thing as closely as
possible.

Levels of Developmental Testing

Unit testing is applied to an executable chunk of code. This chunk can be defined
differently in repositories or the object oriented environment. In simpler times, the unit
was defined as a program.

Unit testing is based primarily on white/glass/structural viewpoint planned against the
program specifications. Programmers execute unit tests using the equipment they use for
development. While unit testing does not require extensive documentation, the test cases
that were executed should be recorded, as specified in DFAS standards, so that these can
be repeated as necessary for regression testing. Unit test data does not require functional
relevance, merely that the data mimic valid (or invalid) transactions. For example, unit
tests may use appropriation numbers that do not exist, as long as no format rules are
violated. Programmers may also substitute names such as “Wiley Coyote” or “Mickey
Mouse” in lieu of those more likely to represent a living person.

System level testing happens in many phases, each with its own name. System level tests
typically include tests with such names as the Software Integration Test, the Software
Qualification Test, the System Integration Test, and the System Qualification Test. At
DFAS, we are developing the DFAS Corporate Information Infrastructure (DCII), in
which several upgrades and releases of corporate applications are incorporated in phased
DCll releases. To handle this extra level of integration, we have replaced the traditional
SQT and SAT with the Functional Validation Test, the Integrated Functional Validation
Test, the Enterprise Integration Test, and the Enterprise Acceptance test. There is also an
Enterprise Performance Test. In all cases, the objective is to test the whole system as one



The DFAS Test Professional’s Companion

entity, validating all the requirements that can be validated in development environment.
It is important to remember that things like data load processes, data conversion
processes, operational processing requirements, manuals, all technical requirements
(memory usage, restart recovery etc.) should be tested at the system level. Itis
insufficient to limit the test to application software, fudging how the data gets in the
system and ignoring external components. These external components will invariably
foul up in the long run if potential problems are not anticipated by testing. Emulate the
production environment as closely as possible. If possible, use the same versions of
software and hardware. With the exception of performance testing, which will simulate
production levels, data used for system level testing will not equal the amount that will be
processed once the system is in production. However, the test must encompass the end-
to-end processes that are anticipated once the system is in production, including data
load, data conversion, and the initial population of data tables. The system level tests
give the opportunity to identify environmental or externally driven problems not directly
related to the new software being produced.

Develop and update test plans in conjunction with the increasing knowledge gained from
the various progress reviews (e.g. requirements reviews) that occur during development.
Plan to use the test plan to guide test execution and document it accordingly. The
necessary test processing flow and execution sequence becomes clear as testers gain
functional understanding of the system. The flow or sequence used may represent only
one of many valid ways to execute the process, but it is generally better for development
testing to be single-threaded. Processes may be tested concurrently, but only where one
sequence does not impact another. This control pinpoints processes that are the root of
problems by removing any doubt that an intertwined process may be the culprit. In
addition, the discipline will facilitate regression testing-- the same thing executed in the
same order should produce the same results. When you have completed formal,
structured testing, it is generally beneficial to give the users an opportunity to develop
their own “ad-hoc” tests and run them. The focus shifts to the user’s ability to use the
system and the system’s ability to satisfy the mission. At this point testing should no
longer be single-threaded.

The first of the system level tests (SIT) should validate documented requirements, both
functional and technical. The test should evaluate system compliance with various
mandated standards (overarching requirements) and as many quality assurance (QA)
attributes (maintainability, portability, usability) as practicable. Refer to the program
Operational Requirements Document (ORD) for any of these not explicitly identified in
the requirement baseline. For DFAS DCII systems, this level of testing occurs during an
event called the Enterprise Integration Test. The earlier SIT test conducted for each
component will not have interacted sufficiently with other system components to
comprehensively address overarching requirements and QA attributes. Comprehensive
or not, however, these should still be evaluated and not left to later tests. Once again, the
earlier a problem is identified, the easier and cheaper it is to fix.

Tests such as Software Qualification Test (SQT), Functional Validation Test (FVT),
Software Acceptance Test (SAT) and Enterprise Acceptance Test (EAT) validate that the



The DFAS Test Professional’s Companion

system suits the user and satisfies the mission. These tests may resemble those run
during SIT and may even use the same data; however, they are designed and evaluated
from the user’s perspective. The goal is to ensure that the system fulfills user business
process needs. While conscientious effort may have been made at program initiation to
accurately represent these needs, we may not have succeeded in capturing all of them in
our requirement baseline. These user-oriented tests provide the user a first opportunity to
test drive the system and this is where such discrepancies will be revealed. Involve the
end-users as much as possible. They are the people who understand their day-to-day
business process and can evaluate the system software against those needs.

On the other hand, users may identify as discrepancies things that were not originally
envisioned as part of the system solution. These may range from conveniences to things
that will yield great productivity savings. Whether these should be categorized as things
that must be fixed or added before the system can be accepted or things that can be
incorporated in a later version of the system must be negotiated. A review team
including testers, program management representatives, customer and/or user
representatives, and developer representatives needs to review and agree on the priority
and category of each identified problem. Without such a disciplined process to review
problems and document disposition agreements, the user may never be willing to
formally accept the system, and acceptance testing will never end

Test Techniques-

White box, glass box, and structural tests require access to source code, are based on
code, and probably will require stubs and drivers to emulate the external environment.
There are many references describing various standard and accepted approaches to unit
tests. These standards need to be translated to whatever development environment is
being utilized. They include guidelines such as approaches that can be taken to build test
cases. The references provide benchmarks for statement coverage, decision coverage,
branch coverage, path testing, cause and effect graphing, and boundary value analysis.
Several references are listed at the end of this document.

Black box and functional tests provide visibility of what’s happening in the application
by examining the data going in and results coming out of the tested component, and
determining whether the results are as expected. The tests do not examine the path the
data takes through the code; in fact, the tester has no visibility of the code. Again, there
are many references providing guidelines and approaches that must be interpreted in light
of the development environment. Client-server environments provide added complexity
since all the interactions between various pieces of software residing on different
components must be considered. Several references are listed at the end of this document

Test Environments-

Programmer initiated tests (Unit) are done in the development environment, ideally one
area for each programmer.



The DFAS Test Professional’s Companion

System level tests are also done in the development environment, matching as closely as
possible all operating and management software versions, and the hardware and software
configuration items that will be used in production. The closer the development
environment can be made to match the production environment, the greater the chance
errors will be identified and the fewer the unanticipated problems to be found in
production. As software is developed and integrated with the total set of components to
be packaged in the release, the test environments should become more and more like the
anticipated production environment.

For software to be deployed in a client server environment, the ability to mimic the
production environment is particularly important, and particularly hard to do. The
combinations of local area networks, wide area networks, communications paths between
components, firewalls, operating systems on clients and on servers, web servers and
browsers, are impossible to anticipate. Still, it is important to emulate as much as
possible the targeted environment.

Organizing and Planning the Test-

There are three major considerations in organizing and planning for the test: execution
steps that emulate those anticipated in production, test data that represents anticipated
variations and problems, and an adequately configured test environment.

Know what is most important to test. Use the priorities defined by the users in early
requirement definition. If the priorities have not been defined, develop them now.
Without defined priorities, testers will prioritize based on their best knowledge and
understanding of the system. This is risky and a poor substitute for the more accurate
priority subject matter experts, customers and users can provide. Once the priority is
established, categorize the requirements into business processes (scenarios) to be tested.
These functional scenarios will then be amplified to include assessment of the systems
ability to meet technical requirements for SIT. When planning the execution steps and
sequence of events for system level tests consider:

(1) What system processing cycles need to be represented in the test- daily,
weekly, yearly, etc? How does on-line processing fit in? Is there batch processing to be
represented? REMEMBER, you want the test to be repeatable. Some processing is not
dependent on other events and may be executed in any order or simultaneously.
However, in order for the test to be the same each time, a specific processing sequence
must be defined and adhered to.

(2) What is the proper ordering of business processes and program execution
within these processing cycles?

When determining what data to use in the test consider:

(1) What is the source of data should be used in this test? “Real” production data
may be composed of thousands of transactions that may or may not represent all the



The DFAS Test Professional’s Companion

conditions to be tested. If production data is to be the basis for test data, it may need to
be culled to reduce volume and supplemented to represent all possible conditions.

(2) If there is no source of production data from which to generate test data, the
initial test data will have to be built. This task is generally difficult and time-consuming.
Testers may have to rely on subject matter experts to create and provide the test data,
which may have unanticipated schedule impacts. There are special tools that will
facilitate the test data creation task.

(3) What is the proper size of the test data file? When determining the size of the
test data file, consider the time it will take to validate transactions. It is important to
evaluate the loading or rejection of data, but it is also important to determine: whether
transactions were loaded without rejection, whether transactions were transformed into
invalid or valid but different transactions by the load, and whether all transactions not
specifically rejected were loaded. A strategy for evaluating the latter circumstances must
be developed and the size of the data file directly impacts how comprehensively this
analysis can be done.

While testers may not exercise full control over the test environment, the following is
important for documenting the test plan:

(1) Document all pieces of the environment, what they are, what software and
version is to be utilized.

(2) For tests other than performance, sizing of items such as the processor,
communication links, and data storage may not be critical; the test data will not require
capacity equal to that required for true production. However, the extent to which such
sizing will impact testing should be carefully evaluated by database staff, technical staff,
and testers to be sure the test environment is adequately sized. Capacity should not
impact or confuse test results. For example, be sure there are sufficient rollback
segments even in the test environment.

A Word on Scenarios and Scripts

Scripts are the instructions/procedures for executing a specific test condition and
evaluating the results. They must include the set-up, execution and validation
procedures.

Scenarios are collections of scripts that test a business process. They must be created
and then mapped to the execution sequence. They should be predicated on the priority
and criticality of the processes

Test Cases are a statement of what is to be tested. At the system level they essentially
state the requirement according to how it will be implemented and measured.



The DFAS Test Professional’s Companion

Event Log- Event logs are important records of the test. Refer to the test standards and
procedures referenced above for formats and guidance on establishing and keeping event
logs.

Test Report- Test reports may be written on several levels. Reports may be created
for organization executives, the Program Manager, the Program Test Director, the
development organization, or the testers themselves. The reports will differ according to
the required level focus and specificity. For example, management reports will contain
summary level information while the development organizations will need information to
allow focus on the sources of problems and cures for them. Use referenced standards and
procedures for mandatory formats. Some reporting requirements may be new or unique,
so be sure to define types of reports to be created and formats before testing begins.

Resourcing the Test Team- Determine the number of dedicated testers according to
schedule and simultaneous test-related events. A good rule of thumb is to assign one
tester, full time, for every four developers. They need to be assigned early and should
participate in early requirements definition and review sessions. Test planning starts with
these requirements defining sessions at the initial stages of the project. The test team
should be highly skilled with a mix highly proficient in both the technical aspects of
testing and the functional aspects of the business requirement to be addressed. Well-
rounded professionals who exhibit initiative and creativity are a must. Some testers may
be taken from the development staff to provide a realistic perspective on the difficulty of
testing and a better understanding of what happens when all the code comes together.

Boris Beizer in his book Software System Testing and Quality Assurance suggests these
nine qualities for the testing professional:

1. Experience as a programmer- for technical members
A thick skin and a good sense of humor- absolutely essential or they won’t

N

survive

Tolerance for chaos- testing surely is that.

Tenacity- they must not give in when they see a problem

Skeptical- questioning everything for potential problems

Cunning- that is wily and skillful.

Bold- not easily intimidated.

Self sufficient- love doesn’t come from the job, need good self-esteem.
Honest- want the best possible product and don’t like compromise.

©ooN AW

Add to this mix the quality of a strong backbone and extraordinary skill in organizing
work and you have the makings of a world-class testing team

Basic skills are not unlike those required of most professionals in today’s
automated world: good PC office software skills that include word processing,
spreadsheets, project management, and single use databases. In addition, the test team
should already know how or be trained to use the test tools and software with which they
will manage and execute tests. In DFAS this includes the Mercury products Test

10



The DFAS Test Professional’s Companion

Director and WinRunner. Those who participate in performance testing will also need to
be able to expertly use LoadRunner. For DFAS, experience with Cognos and Impromptu
along with a basic understanding and ability to work with SQL are essential. Bonus
points are awarded for the ability to use the evaluation software TOAD. Those who
posses a general understanding of whatever development tool are being used receive
extra bonus points..

Training for the Test Team- Members of the test team must be trained in basic test
principles as well as in the specific tools and techniques to be used. There are several
basic courses available, either classroom or over the Internet, from the Software Testing
Center. Tuition is less for training taken over the net, and individuals can schedule such
training so that it will not intrude with work schedules. The classroom training is also
reasonable and, if several testers need the training, may be an excellent opportunity to
begin the team building so important for success. The Software Testing Center URL is
http://www.testingcenter.com. As mentioned earlier, client-server testing includes
techniques not necessarily encountered during traditional mainframe--based testing. The
Client Server course offered by the Software Testing Center is a good introduction to the
different approach needed.

For the future, DFAS is developing a test class focused on applications developed using
Oracle Designer/Developer and based on functionality from the DCII. This will be
particularly valuable for DCII testers. It is planned to be available in spring, 2001.

In addition, there are numerous conferences, seminars and other courses available. A
web search will reveal just how many of these are available and will help locate the right
one.

In addition, there are several professional testing certifications. Perhaps the best known
the Certified Software Test Engineer conferred by the Quality Assurance Institute of
Orlando, FI. Also available is the Certified Software Test Professional designation
offered by the International Institute for Software Testing of Inver Grove Heights, MN.
It is highly recommended that Program Test Directors hold or enroll in a course of study
to obtain such certifications.

Tools- Standard software, software tools, and software approved for execution of the
DFAS ELAN are enumerated on the Infoweb. They can be found at these URLS:

https://infoweb.dfas.mil/technology/infrastructure/standards/sw/corplice.htm

https://infoweb.dfas.mil/library/requlations/ha/80001r/bc2ap4.pdf

https://infoweb.dfas.mil/technology/infrastructure/standards/sw/appsftw.pdf

While many of these are not test specific, they can facilitate the work of the tester, for
example, drawing tools can be sued to diagram system flow processes and test
environment configurations.

11


http://www.testingcenter.com/

The DFAS Test Professional’s Companion

Standard test tools include the Mercury Test Suite and the Configuration management
Information System (CMIS) for recording and tracking Test discrepancy Reports.

There are also data generators, file compare tools, tools to measure software
performance. These tools can help manage and improve testing. Some of the metrics
tools can provide especially useful statistics to measure software performance and errors
detected and thus demonstrate how effectively tests identified and eliminated errors..

General Resources and References- Every test location should have a library of
test references. Supervisors and testers should work together to develop development
programs that encourage the testers to expand their field of knowledge. Information
about software testing continues to grow and new techniques are developed and discussed
daily. Testers should consider it a part of their job to remain current in their discipline
and to independently pursue requisite knowledge.

Seminars- Testers should plan to attend one testing conference a year to share their
experiences and to learn what other organizations are doing. These seminars also
introduce the latest testing technology and disciplines. The annual conference of the
Quality Assurance Institute held each fall in Orlando FL, and is a rich source of good
information, especially for beginning and intermediate testers. Other worthwhile
seminars include the annual STAR East and West conferences. Software Quality
Engineering, out of Jacksonville FL, offers many especially challenging seminars. Those
interested should search the Web every month or so to discover the most recent offerings.

Books offer readily available, comprehensive references. Each test site should acquire
and keep current a basic library of testing books. The following is a suggested starting
bibliography:

Myers, Glenford The Art of Software Testing- classic in the field written for
the beginner. Very useful
Beizer, Boris Software Testing Techniques- these are written with humor

and guaranteed to keep the reader awake and thinking
Software System Testing and QA
Black Box Testing
Caner, Kem Testing Computer Software- excellent text with list of 400
common bugs in IBM software. This author is also an
attorney and very active with Internet security concerns..
Siegel, Shel Object Oriented Software Testing- written specifically for
object-oriented applications.

Magazines- Software Testing and Quality Engineering and Crosstalk are good testing
reference periodicals, which should be included in the periodical section of the reference
library. Magazines devoted to software development will also contain useful articles on
test and evaluation.

12



The DFAS Test Professional’s Companion

Web Sites- Some specific sites for testing-related information are listed below; however,
the information available on the web changes rapidly. A web search (the search engines
“Google” and “Alltheweb” are particularly recommended; “Dogpile” and “Northern
Light” are also good) for the words “software testing” will return a wealth or informative
sites.

http://www.evolutif.co.uk/ This is a European link well worth exploring. Particularly
look for their white papers. Very good discussions of lots of issues.

http://www.ondaweb.com/sti/ - This link is to the Software Testing Institute located in
Dallas. It was founded by the woman who first started Autotester, an automated tool.

Some search sites, such as http://www.karnak.com , offer subscriptions to search the web
periodically for specific items of interest and provide periodic updates.

13


http://www.karnak.com/

